在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)当直线MN绕点C旋转到图(1)的位置时,证:①△ACD≌△CEB②DE=AD+BE;(2)当直线MN绕点C旋转到图⑵的位置时,证:DE=AD-BE;(3)当直线MN... (1)当直线MN绕点C旋转到图(1)的位置时,证:①△ACD≌△CEB②DE=AD+BE;
(2)当直线MN绕点C旋转到图⑵的位置时,证:DE=AD-BE;
(3)当直线MN绕点C旋转到图⑶的位置时,试问DE、AD、BE具有怎样的等量关系?
展开
百度网友b20b593
高粉答主

2013-05-19 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.3亿
展开全部

1)证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,
∴Rt△ADC≌Rt△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;

(2)证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,
∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;

(3)DE=BE-AD.证明的方法与(2)相同

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式