求这两道题的导数,要详细过程!谢谢!
2个回答
展开全部
(3)y=lncos√x的导数
y'=(1/cos√x)·(cos√x)'
=(1/cos√x)·(-sin√x)·(√x)'
=(1/cos√x)·(-sin√x) ·1/(2√x)
= -tan√x · 1/(2√x)
(6)y=1/2·x ·-√a^2-x^2+arcsinx的导数
设当a为常数时,
y'=(1/2·x·√a^2-x^2)'+(arcsinx)' 注析:这里把1/2·x·√a^2-x^2部分看成是1/2x与√a^2-x^2乘积的导数,即
=(1/2x)'·√a^2-x^2+(√a^2-x^2)'·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(a^2-x^2)'·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(-2x)·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(-x^2)+(arcsinx)'
=(1/2x)'·√a^2-x^2-x^2/(2√a^2-x^2)+(arcsinx)'
=1/2·√a^2-x^2-x^2/(2√a^2-x^2)+(1/√1-x^2)
结果可继续化简得:a^2-2x^2/(2√a^2-x^2)+(1/√1-x^2)
y'=(1/cos√x)·(cos√x)'
=(1/cos√x)·(-sin√x)·(√x)'
=(1/cos√x)·(-sin√x) ·1/(2√x)
= -tan√x · 1/(2√x)
(6)y=1/2·x ·-√a^2-x^2+arcsinx的导数
设当a为常数时,
y'=(1/2·x·√a^2-x^2)'+(arcsinx)' 注析:这里把1/2·x·√a^2-x^2部分看成是1/2x与√a^2-x^2乘积的导数,即
=(1/2x)'·√a^2-x^2+(√a^2-x^2)'·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(a^2-x^2)'·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(-2x)·x/2+(arcsinx)'
=(1/2x)'·√a^2-x^2+(1/(2√a^2-x^2))·(-x^2)+(arcsinx)'
=(1/2x)'·√a^2-x^2-x^2/(2√a^2-x^2)+(arcsinx)'
=1/2·√a^2-x^2-x^2/(2√a^2-x^2)+(1/√1-x^2)
结果可继续化简得:a^2-2x^2/(2√a^2-x^2)+(1/√1-x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询