已知角MON=40度,P为角MON内一定点,OM上有一点A,ON上有一点B。 当三角形PAB的周长取最小值时,求角APB的
1个回答
2013-05-19
展开全部
设点P关于OM、ON对称点分别为P′、P″,当点A、B在P′P″上时,△PAB周长为PA+AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数
解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,
连接PA、PB,此时△PAB周长的最小值等于P′P″.
如图所示:由轴对称性质可得,
OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,
∴∠P′OP″=2∠MON=2×40°=80°,
∴∠OP′P″=∠OP″P′=(180°-80°)÷2=50°,
又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,
∴∠APB=∠APO+∠BPO=100°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询