AD为三角形ABC的角平分线,M为AB中心,ME〃AD交BA延长线于E,交AC于F,求证:BE=CF=二分之一(AB+AC)

ydxyyf211
2013-05-19 · 超过27用户采纳过TA的回答
知道答主
回答量:63
采纳率:0%
帮助的人:42万
展开全部
证明:过B作BN∥AC交EM延长线于N点,
∵BN∥AC,BM=CM,
∴CF:BN=CM:BM,∠CFM=∠N,
∴CF=BN,
又∵AD∥ME,AD平分∠BAC,
∴∠CFM=∠DAC=∠E,
∴∠E=∠N,
∴△BEN是等腰三角形,
∴BE=BN=CF,
∵∠EFA=∠CFM,
∴∠E=∠EFA,
∴AE=AF,
AB+AC=AB+AF+FC=AB+AE+FC=BE+FC,
即BE=CF=
1
2 (AB+AC).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式