
求对数函数值域的方法
3个回答
2013-10-30
展开全部
如果对于初等函数(你们接触的那些函数应该一般都是),如果没有限定定义域,也就是可以取定所有x可以取到的值,而且反函数存在,那么就可以用一楼说的求反函数定义域的方法来求.
但这显然不是一个通用的方法.
实际上求值域就是要尽量画出函数的图象来,就算不知道精确图,能画出个大概的样子也行,看x的一步步变化和函数y的变化情况,然后求出y的范围.
比如对于具有单调性的函数,你可以根据x的取值求出最左边那个点和最右边那个点,也就是最小和最大值,如果这个函数在这个区间内还是连续的,那么它的值域就是 [min,max] 这个区间;
再有,如果不是整个单调的,甚至是不连续的,你就分段看单调性,画出图象大概的变化情况,如果有些特殊点可以求出来,就把特殊点求出来方便你画图.
对于一些常用的函数,比如二次函数也就是抛物线,它的最小最大值的求法无非是2种情况,一种是在某个区间内单调(对称轴两边),一种是刚好可以取到对称轴的那个点作为最值.
再具体的你就要举些例子来问了.
不如你做了习题再来这里问,我帮你解答.
自己总结习题上的各个方法也是一个能力的考验...加油吧...
但这显然不是一个通用的方法.
实际上求值域就是要尽量画出函数的图象来,就算不知道精确图,能画出个大概的样子也行,看x的一步步变化和函数y的变化情况,然后求出y的范围.
比如对于具有单调性的函数,你可以根据x的取值求出最左边那个点和最右边那个点,也就是最小和最大值,如果这个函数在这个区间内还是连续的,那么它的值域就是 [min,max] 这个区间;
再有,如果不是整个单调的,甚至是不连续的,你就分段看单调性,画出图象大概的变化情况,如果有些特殊点可以求出来,就把特殊点求出来方便你画图.
对于一些常用的函数,比如二次函数也就是抛物线,它的最小最大值的求法无非是2种情况,一种是在某个区间内单调(对称轴两边),一种是刚好可以取到对称轴的那个点作为最值.
再具体的你就要举些例子来问了.
不如你做了习题再来这里问,我帮你解答.
自己总结习题上的各个方法也是一个能力的考验...加油吧...

2025-04-08 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-30
展开全部
如果对于初等函数(你们接触的那些函数应该一般都是),如果没有限定定义域,也就是可以取定所有x可以取到的值,而且反函数存在,那么就可以用一楼说的求反函数定义域的方法来求.
但这显然不是一个通用的方法.
实际上求值域就是要尽量画出函数的图象来,就算不知道精确图,能画出个大概的样子也行,看x的一步步变化和函数y的变化情况,然后求出y的范围.
比如对于具有单调性的函数,你可以根据x的取值求出最左边那个点和最右边那个点,也就是最小和最大值,如果这个函数在这个区间内还是连续的,那么它的值域就是 [min,max] 这个区间;
再有,如果不是整个单调的,甚至是不连续的,你就分段看单调性,画出图象大概的变化情况,如果有些特殊点可以求出来,就把特殊点求出来方便你画图.
但这显然不是一个通用的方法.
实际上求值域就是要尽量画出函数的图象来,就算不知道精确图,能画出个大概的样子也行,看x的一步步变化和函数y的变化情况,然后求出y的范围.
比如对于具有单调性的函数,你可以根据x的取值求出最左边那个点和最右边那个点,也就是最小和最大值,如果这个函数在这个区间内还是连续的,那么它的值域就是 [min,max] 这个区间;
再有,如果不是整个单调的,甚至是不连续的,你就分段看单调性,画出图象大概的变化情况,如果有些特殊点可以求出来,就把特殊点求出来方便你画图.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询