2个回答
展开全部
首先分母趋于0,但极限有界,所以
分子也趋于0才可能
一看的确
洛必达一次
lim [f(x)+xf'(x)-1/(1+x)]/3x^2=1/3
同理分子在x=0时应该为0
所以
f(0)+0-1=0
f(0)=1
洛必达第二次
lim [f'+f'+xf''+1/(1+x)^2]/6x=1/3
同理分子在x=0时应该为0
所以
2f'(0)+0+1=0
f'(0)=-1/2
洛必达第三次
lim [2f''+f''+xf'''-2/(1+x)^3]/6=1/3
即
3f''(0)-2=2
f''(0)=4/3
f(0)=1,f'(0)=-1/2,f''(0)=4/3
分子也趋于0才可能
一看的确
洛必达一次
lim [f(x)+xf'(x)-1/(1+x)]/3x^2=1/3
同理分子在x=0时应该为0
所以
f(0)+0-1=0
f(0)=1
洛必达第二次
lim [f'+f'+xf''+1/(1+x)^2]/6x=1/3
同理分子在x=0时应该为0
所以
2f'(0)+0+1=0
f'(0)=-1/2
洛必达第三次
lim [2f''+f''+xf'''-2/(1+x)^3]/6=1/3
即
3f''(0)-2=2
f''(0)=4/3
f(0)=1,f'(0)=-1/2,f''(0)=4/3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询