已知数列{an}是等差数列,a1+a2+a3=15,数列{bn}是等比数列,b1b2b3=27
展开全部
首先你要知道等差中项、等比中项的性质
设{an}公差为d,{bn}公比为q
a1+a2+a3=3a2=15 a2=5
b1b2b3=b2³=27 b2=3
d=a2-a1=a2-b2=5-3=2
a1=b2=3
an=a1+(n-1)d=3+2(n-1)=2n+1
q=b3/b2=a4/b2=(2×4+1)/3=3
b1=b2/q=3/3=1
bn=b1q^(n-1)=1×3^(n-1)=3^(n-1)
数列{an}的通项公式为an=2n+1;数列{bn}的通项公式为bn=3^(n-1)
设{an}公差为d,{bn}公比为q
a1+a2+a3=3a2=15 a2=5
b1b2b3=b2³=27 b2=3
d=a2-a1=a2-b2=5-3=2
a1=b2=3
an=a1+(n-1)d=3+2(n-1)=2n+1
q=b3/b2=a4/b2=(2×4+1)/3=3
b1=b2/q=3/3=1
bn=b1q^(n-1)=1×3^(n-1)=3^(n-1)
数列{an}的通项公式为an=2n+1;数列{bn}的通项公式为bn=3^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2a2=a1+a3,所以a2=5,b2^2=b1*b3,所以b2=3
a1=b2=3,因为a2=a1+d,a3=a1+2d,代入a1+a2+a3=15得d=2,所以an=1+2n
a4=1+2*4=9=b3,所以q=b3/b2=9/3=3,所以bn=3^(n-1)
a1=b2=3,因为a2=a1+d,a3=a1+2d,代入a1+a2+a3=15得d=2,所以an=1+2n
a4=1+2*4=9=b3,所以q=b3/b2=9/3=3,所以bn=3^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询