已知向量m=(根号3sin(x/4),1),向量n=(cos(x/4),cos^2(x/4))
(1)若m.n=1,求cos(2π/3-x)值。(2)记f(x)=m.n,在△ABC中,ABC对边为abc,满足(2a-c)cosB=bccosC,求f(A)取值范围。...
(1)若m.n=1,求cos(2π/3-x)值。(2)记f(x)=m.n,在△ABC中,ABC对边为abc,满足(2a-c)cosB=bccosC,求f(A)取值范围。
展开
1个回答
2013-11-10
展开全部
m.n=1
(√3sin(x/4),1). (cos(x/4),(cos(x/4))^2)=1
√3sin(x/4). (cos(x/4)+ (cos(x/4))^2 =1
(√3/2)sin(x/2) +( cos(x/2) +1) /2=1
((√3/2)sin(x/2)+(1/2)cosx/2) = 1/2
cos(π/3 -x/2) = 1/2
[cos(π/3 -x/2)]^2 = 1/4
(cos(2π/3 -x) +1)/2 = 1/4
cos(2π/3 -x) = -1/2 (2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcocC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C),…(9分)
∵A+B+C=π,
∴sin(B+C)=sinA,且sinA≠0,
∴cosB=12,即B=π3,…(11分)
∴0<A<2π3,
∴π6<A2+π6<π2,
∴12<sin(A2+π6)<1,…(12分)
又∵f(x)=m�6�1n=sin(x2+π6)+12,
∴f(A)=sin(A2+π6)+12,
∴1<f(A)<32,
则函数f(A)的取值范围是(1,32).
(√3sin(x/4),1). (cos(x/4),(cos(x/4))^2)=1
√3sin(x/4). (cos(x/4)+ (cos(x/4))^2 =1
(√3/2)sin(x/2) +( cos(x/2) +1) /2=1
((√3/2)sin(x/2)+(1/2)cosx/2) = 1/2
cos(π/3 -x/2) = 1/2
[cos(π/3 -x/2)]^2 = 1/4
(cos(2π/3 -x) +1)/2 = 1/4
cos(2π/3 -x) = -1/2 (2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcocC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C),…(9分)
∵A+B+C=π,
∴sin(B+C)=sinA,且sinA≠0,
∴cosB=12,即B=π3,…(11分)
∴0<A<2π3,
∴π6<A2+π6<π2,
∴12<sin(A2+π6)<1,…(12分)
又∵f(x)=m�6�1n=sin(x2+π6)+12,
∴f(A)=sin(A2+π6)+12,
∴1<f(A)<32,
则函数f(A)的取值范围是(1,32).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询