国外留学,发现高等数学完全不懂了,求大神速度帮忙解决3题,万分感谢。一定要步骤。
Showthattheindicatedfunctiony1(x)isasolutionofthegivendif-ferentialequation.Usereduct...
Show that the indicated functiony1(x) is a solution of the given dif-
ferential equation. Use reduction of order, to find a second solutiony2(x).
(a)y′′+y=0; y1=sinx
(b)xy′′+y′=0; y1=lnx
(c) (1−2x−x^2)y′′+2(1+x)y′−2y=0; y1=x+1 展开
ferential equation. Use reduction of order, to find a second solutiony2(x).
(a)y′′+y=0; y1=sinx
(b)xy′′+y′=0; y1=lnx
(c) (1−2x−x^2)y′′+2(1+x)y′−2y=0; y1=x+1 展开
4个回答
展开全部
a. y1'=cosx y1''=-sinx
y1''+y1=-sinx+sinx=0
∴y1(x) is a solution of the given differential equation.
let y2(x)=c(x)y1(x)
y2'=c'y1+cyi'
y2''=c''y1+2c'y1'+cy1''
y2''+y2=c''y1+2c'y1'+cy1''+cy1=c''y1+2c'y1'=0
sinxdc'+2cosxc'dx=0
(sinx)^2dc'+2sinxcosxc'dx=0
d[c'(sinx)^2]=0
c'=c1/(sinx)^2 c=-c1cotx+c2
let c1=-1 c2=0
c=cotx
y2=cy1=cotxsinx=cosx
Similarly, you can calculate the others
y1''+y1=-sinx+sinx=0
∴y1(x) is a solution of the given differential equation.
let y2(x)=c(x)y1(x)
y2'=c'y1+cyi'
y2''=c''y1+2c'y1'+cy1''
y2''+y2=c''y1+2c'y1'+cy1''+cy1=c''y1+2c'y1'=0
sinxdc'+2cosxc'dx=0
(sinx)^2dc'+2sinxcosxc'dx=0
d[c'(sinx)^2]=0
c'=c1/(sinx)^2 c=-c1cotx+c2
let c1=-1 c2=0
c=cotx
y2=cy1=cotxsinx=cosx
Similarly, you can calculate the others
展开全部
These differential equations have a common characteristic. They all have a same solution which is 0.
So actually u can add a modulus in the front.
which means if the Y1=sinx, Y2 can be ksinx, such as 2sinx, 3sinx.
It's very easy, hope u understand.
So actually u can add a modulus in the front.
which means if the Y1=sinx, Y2 can be ksinx, such as 2sinx, 3sinx.
It's very easy, hope u understand.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-05-21
展开全部
你把要求翻译一下,最烦看英文了。。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-05-21
展开全部
不是原题 题目最后自己写清楚
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询