统计学中,如何计算累计频率和Pi? 5
3个回答
展开全部
累计频率是两种或两种以上的事件发生的频率之和。Pi(圆周率)是圆的周长与直径的比值。
Pi也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料:
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。π在许多数学领域都有非常重要的作用。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
推荐于2017-09-03 · 知道合伙人教育行家
关注
展开全部
方法:为了统计分析的需要,有时需要观察某一数值以下或某一数值以上的频率之和,就可以计算累积频率,或叫做对频率的累计。从变量值小的一方向变量值大的一方累加,称为向上累积,反之为向下累积。如第一组所占频率为6%,下一组为10%,则向上的累积频率为16%,依次类推。
累积频率(Cumulative Percentage),按某种标志对数据进行分组后,分布在各组内的数据个数称为频数或次数,各组频数与全部频数之和的比值称为频率或比重。为了统计分析的需要,有时需要观察某一数值以下或某一数值以上的频率之和,叫做累积频率,或叫做对频率的累计。从变量值小的一方向变量值大的一方累加,称为向上累积,反之为向下累积。频率的最终累积值为100%。
统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。
累积频率(Cumulative Percentage),按某种标志对数据进行分组后,分布在各组内的数据个数称为频数或次数,各组频数与全部频数之和的比值称为频率或比重。为了统计分析的需要,有时需要观察某一数值以下或某一数值以上的频率之和,叫做累积频率,或叫做对频率的累计。从变量值小的一方向变量值大的一方累加,称为向上累积,反之为向下累积。频率的最终累积值为100%。
统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |