展开全部
解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解,它的步骤如下:
(1)设出未知数,确定目标函数。
(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。
(3)由目标函数变形为,所以求z的最值可看成是求直线在y轴上截距的最值(其中a、b是常数,z随x、y的变化而变化)。
(4)作平行线:将直线平移(即作的平行线),使直线与可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点的坐标。
(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z的最大(小)值。
扩展资料:
线性规划基本概念:
(1)可行解:把满足约束条件的一组决策变量值 称为该线性规划问题的可行解。
(2)可行解集/可行解域:满足约束条件的可行解的全体称为可行解集,在平面上,所有可行解的点的集合称为可行解域。
(3)最优解:在可行解集中,使目标函数达到最优值的可行解称为最优解。
参考资料:
推荐于2017-11-25
展开全部
简单的线性规划 (1)求线性目标函数的在约束条件下的最值问题的求解步骤是: ①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l; ②平移——将l平行移动,以确定最优解所对应的点的位置; ③求值——解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询