
已知x/5=y/3,则x/x+y+y/x-y-y^2/x^2+y^2的值为? O(∩_∩)O谢谢
1个回答
展开全部
已知x/5=y/3那么y=3x/5
x/(x+y)+y/(x-y)-y²/(x²+y²)
=[(x²-xy)(x²+y²)+(xy+y²)(x²+y²)-y²(x²-y²)]/[(x²-y²)(x²+y²)]
=(x^4+x²y²-x³y-xy³+x³y+xy³+y²x²+y^4-y²x²+y^4)/(x^4-y^4)
=(x^4+x²y²+2*y^4+y^4)/(x^4-y^4)
=[x^4+x²(3/5*x)²+2*(3/5*x)^4]/[x^4-(3/5*x)^4)]
=[x^4+x²(3/5*x)²+2*(3/5*x)^4]/[x^4-(3/5*x)^4)]
=(x^4+9/25*x^4+162/625*x^4)/(x^4-81/625*x^4)
=[x^4(625+225+162)/625]/[x^4(625-81)/625]
=1012/544
=253/136
x/(x+y)+y/(x-y)-y²/(x²+y²)
=[(x²-xy)(x²+y²)+(xy+y²)(x²+y²)-y²(x²-y²)]/[(x²-y²)(x²+y²)]
=(x^4+x²y²-x³y-xy³+x³y+xy³+y²x²+y^4-y²x²+y^4)/(x^4-y^4)
=(x^4+x²y²+2*y^4+y^4)/(x^4-y^4)
=[x^4+x²(3/5*x)²+2*(3/5*x)^4]/[x^4-(3/5*x)^4)]
=[x^4+x²(3/5*x)²+2*(3/5*x)^4]/[x^4-(3/5*x)^4)]
=(x^4+9/25*x^4+162/625*x^4)/(x^4-81/625*x^4)
=[x^4(625+225+162)/625]/[x^4(625-81)/625]
=1012/544
=253/136
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询