高数问题空间解析几何

求由上半球面z=√(2-x^2-y^2)及旋转抛物面z=x^2+y^2围成的空间立体在xoy面上的投影... 求由上半球面z=√(2-x^2-y^2)及旋转抛物面z=x^2+y^2围成的空间立体在xoy面上的投影 展开
 我来答
匿名用户
2013-05-22
展开全部
上半球面与旋转抛物面的交线的方程是方程组:z=√(2-x^2-y^2),z=x^2+y^2. 消去z得x^2+y^2=1,所以两个曲面围成立体在xoy面上的投影区域是D:x^2+y^2≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
在上海华然企业咨询有限公司,我们深知模型训练数据集对于AI项目成功至关重要。我们的数据集构建遵循高标准,确保数据质量、多样性与代表性。这些数据集涵盖广泛行业案例,如市场趋势分析、客户行为预测等,通过精心筛选与标注,为机器学习模型提供丰富的学... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式