3个回答
展开全部
当n趋于无穷, 相邻两项之比的绝对值
|((-1)^(n+1)·x^(2n+3)/(2n+3))/((-1)^n·x^(2n+1)/(2n+1))| = (2n+1)x²/(2n+3) → x².
根据D'Alembert比值判别法, 级数在(-1,1)收敛, 对|x| > 1发散.
若x = 1, ∑(-1)^n/(2n+1)为交错级数, 通项绝对值1/(2n+1)递减趋于0.
根据Leibniz判别法, 级数收敛.
若x = -1, ∑(-1)^n·(-1)^(2n+1)/(2n+1) = ∑(-1)^(n+1)/(2n+1).
同样根据Leibniz判别法可知其收敛.
因此级数的收敛域为[-1,1].
|((-1)^(n+1)·x^(2n+3)/(2n+3))/((-1)^n·x^(2n+1)/(2n+1))| = (2n+1)x²/(2n+3) → x².
根据D'Alembert比值判别法, 级数在(-1,1)收敛, 对|x| > 1发散.
若x = 1, ∑(-1)^n/(2n+1)为交错级数, 通项绝对值1/(2n+1)递减趋于0.
根据Leibniz判别法, 级数收敛.
若x = -1, ∑(-1)^n·(-1)^(2n+1)/(2n+1) = ∑(-1)^(n+1)/(2n+1).
同样根据Leibniz判别法可知其收敛.
因此级数的收敛域为[-1,1].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询