错位相减法是怎样的?能举下例子吗?举下数列的错位相减,最好能详细点,最好能像老师一样教我 100

 我来答
匿名用户
2013-05-23
展开全部
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。

例如,求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x²+5x³+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2x[1+x+x²+x³+…+x^(n-2)]-(2n-1)*x^n;
化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2

例子:
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n

错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(格式问题,在a后面的数字和n都是指数形式):

S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)
在(1)的左右两边同时乘上a。 得到等式(2)如下:
aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)
(1-a)S=a+a2+a3+……+an-1+an-nan+1
S=a+a2+a3+……+an-1+an用这个的求和公式。
(1-a)S=a+a2+a3+……+an-1+an-nan+1
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。

例子:求和Sn=3x+5x²+7x³+……..+(2n-1)·x的n-1次方(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n²;
当x不等于1时,Sn=3x+5x²+7x³;+……..+(2n-1)·x的n-1次方
所以xSn=x+3x²+5x³+7x四次方……..+(2n-1)·x的n次方
所以两式相减的(1-x)Sn=1+2x(1+x+x²;+x³;+。。。。。+x的n-2次方)-(2n-1)·x的n次方。
化简得:Sn=(2n-1)·x的n+1次方 -(2n+1)·x的n次方+(1+x)/(1-x)平方
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn= 3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2

错位相减法 ,这个在求等比数列求和公式时就用了
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
点点外婆
2013-05-23 · 知道合伙人教育行家
点点外婆
知道合伙人教育行家
采纳数:3050 获赞数:15981
65年毕业于上海师范学院数学系,留校。后调到宁波,在三中等校工作32年,历任教导副主任,教学副校长等职

向TA提问 私信TA
展开全部
例如数列 1*2,2*2^2,
3*2^3, 4*2^4,…..,n*2^n,

它不是等差数列,也不是等比数列,但它是由一个等差数列1,2,3,….,n和一个等比数列2,2^2,2^3,…,2^n中的对应项相乘组成的,这种数列求和时,要用到错位相减法。

Sn= 1*2+2*2^2+3*2^3+….. (n-1)*2*(n-1)+n*2^n ①,

此式的左右都乘以2 (这个2是等比数列中的公比)

2Sn= 1*2^2+2*2^3+3*2^4+…..+(n-1)*2*n+n*2^(n+1)②

在书写②式时,一定要使2的次数相同的项对齐

①-②

-Sn=(2^1+2^2+2^3+……+2^n)-n*2^(n+1)

=2(2^n-1)/(2-1)-
n*2^(n+1), 整理此式,再两边乘以-1,

Sn=(n-1)*2^(n+1)+2

可以检验一下,当n=2时,S2=10,当n=3时,S3=34,都正确的。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梦工厂55
2013-05-23 · TA获得超过392个赞
知道小有建树答主
回答量:298
采纳率:100%
帮助的人:257万
展开全部
1.如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的
2.例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2[x+x^2+x^3+x^4+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=1/1-x+(2x-2x^n)/(1-x)^2-(2n-1)*x^n/1-x
3.错位相减法是求和的一种解题方法。在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。
这是例子:S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n (1)
在(1)的左右两边同时乘上a。 得到等式(2)
如下:aS= a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1) (2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1) (3)
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-05-23
展开全部
这个你到百度上去搜,百度百科上就有,详细的例子也有,应该符合你的要求
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Frank2012308
2013-05-23 · TA获得超过3109个赞
知道大有可为答主
回答量:2144
采纳率:72%
帮助的人:664万
展开全部
等比数列前n项和的公式就是用错位法计算的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式