22题第2问求解.
1个回答
展开全部
本题是2011年贵阳的中考题,解答如下:
1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=BC
∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°
∴∠EBC= (180°﹣30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=CD,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等边三角形,
∴CE=CD=BC
∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°
∴∠EBC= (180°﹣30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
更多追问追答
追问
为什么∠CBE是等腰三角形?
追答
三角形CDE是等边三角形,CE=CD
∵正方形ABCD
∴CD=CB
∴CB=CD=CE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询