如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,角AED=2∠CED,点G是DF的中点。(1)求证
如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,角AED=2∠CED,点G是DF的中点。(1)求证:∠CED=∠DAG;(2)若BE=1,AG...
如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,角AED=2∠CED,点G是DF的中点。(1)求证:∠CED=∠DAG;(2)若BE=1,AG=4,求AB:AE的值
展开
1个回答
展开全部
1 因为矩形,所以AD平行CE,所以∠CED=∠EDA,∠BAD=90°,因为FG=DG,所以AG=1/2DF=DG=FG,所以∠EDA=∠DAG,又因为∠CED=∠EDA,所以∠CED=∠DAG
2 因为∠AGE=∠EDA+∠DAG,因为∠EDA=∠DAG,所以∠AGE=2∠EDA,因为∠AED=2∠CED,∠CED=∠EDA,所以∠AGE=∠AED,所以AG=AE=4,所以用勾股定理求出AB,然后就求出比值
如果有不懂的追问,好的话请采纳!谢谢啦!
2 因为∠AGE=∠EDA+∠DAG,因为∠EDA=∠DAG,所以∠AGE=2∠EDA,因为∠AED=2∠CED,∠CED=∠EDA,所以∠AGE=∠AED,所以AG=AE=4,所以用勾股定理求出AB,然后就求出比值
如果有不懂的追问,好的话请采纳!谢谢啦!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询