ln(1+x^2)原函数怎么求
展开全部
用分部积分法:
∫ ln(1+x²) dx
=xln(1+x²)-∫ xd[ln(1+x²)]
=xln(1+x²)-∫ [x*2x/(1+x²)]dx
=xln(1+x²)-2∫ x²/(1+x²)dx
=xln(1+x²)-2∫ [1-1/(1+x²)]dx
=xln(1+x²)-2x+2arctanx+C
C为任意常数
扩展资料:
已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
例如:sinx是cosx的原函数。
已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
∫ln(1+x^2) dx
= xln(1+x^2) - 2∫ [x^2/(1+x^2)] dx
= xln(1+x^2) - 2∫ dx + 2∫ dx/(1+x^2)
= xln(1+x^2) - 2x + 2arctanx + C
= xln(1+x^2) - 2∫ [x^2/(1+x^2)] dx
= xln(1+x^2) - 2∫ dx + 2∫ dx/(1+x^2)
= xln(1+x^2) - 2x + 2arctanx + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |