6个回答
展开全部
椭圆面积公式S= 圆周率*ab(其中a、b分别是椭圆的长半轴、短半轴的长)
椭圆面积公式S=圆周率 ab(其中a、b分别是椭圆的长半轴、短半轴的长).在中学数学教材中,仅在高中《平面解析几何》的习题中作为已知公式给出过,直到高等数学的定积分学习时才给出定积分推导.现用初等数学方法作两种推导,供读者参考.
定理1. 若夹在两条平行直线间的两个平面图形,被平行于两条平行直线的任一直线所截,如果截得的两条线段长的比例总相等,那么这两个平面图形的面积比等于截得线段长的比 .
注:此定理相当于祖暅原理的推论,故证明从略.
方法一:设椭圆C的方程为 (a>b>0),辅助圆C 的方程为x2+y2=b2,且一直线L:y = m( )与两曲线相交,交点分别为M(x1 , m)、 N(x2 , m)及P(x3 , m)、Q(x , m),如图1.
由 解得 x = ,
此时, = ;
由 解得x =± , (图1)
此时, =2 .
、当 ,即b=|m|时,交点为(0,b)或(0,-b);
、当 ,即b≠|m|时,有 .
显然 是一种特殊情况,即直线L与两曲线C、C 交于一点,此时与求椭圆C的面积无影响,故可忽略;在情况 下,即椭圆C的弦长|MN|与圆C 的弦长|PQ|比恒为定值 时,则当设椭圆C与圆C 的面积分别为S、S 时,由定理1得 = ,又圆C 的面积S =πb ,故有 S = S = πb =πab .
所以椭圆C的面积公式为 S =πab (其中a、b分别是椭圆的长半轴、短半轴的长).
椭圆面积公式S=圆周率 ab(其中a、b分别是椭圆的长半轴、短半轴的长).在中学数学教材中,仅在高中《平面解析几何》的习题中作为已知公式给出过,直到高等数学的定积分学习时才给出定积分推导.现用初等数学方法作两种推导,供读者参考.
定理1. 若夹在两条平行直线间的两个平面图形,被平行于两条平行直线的任一直线所截,如果截得的两条线段长的比例总相等,那么这两个平面图形的面积比等于截得线段长的比 .
注:此定理相当于祖暅原理的推论,故证明从略.
方法一:设椭圆C的方程为 (a>b>0),辅助圆C 的方程为x2+y2=b2,且一直线L:y = m( )与两曲线相交,交点分别为M(x1 , m)、 N(x2 , m)及P(x3 , m)、Q(x , m),如图1.
由 解得 x = ,
此时, = ;
由 解得x =± , (图1)
此时, =2 .
、当 ,即b=|m|时,交点为(0,b)或(0,-b);
、当 ,即b≠|m|时,有 .
显然 是一种特殊情况,即直线L与两曲线C、C 交于一点,此时与求椭圆C的面积无影响,故可忽略;在情况 下,即椭圆C的弦长|MN|与圆C 的弦长|PQ|比恒为定值 时,则当设椭圆C与圆C 的面积分别为S、S 时,由定理1得 = ,又圆C 的面积S =πb ,故有 S = S = πb =πab .
所以椭圆C的面积公式为 S =πab (其中a、b分别是椭圆的长半轴、短半轴的长).
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
πab,是通过积分计算的,算四分之一椭圆面积后再乘以4,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
问题有问题啊,椭圆怎么还有长高宽?用一个制图软件画出来,一测量就行了。制图软件最常用的是autocad,找你认识的会用的人给画一下,两分钟搞定。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询