问题:如图(1)在菱形ABCD和菱形BEFG中,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠ABC
问题:如图(1)在菱形ABCD和菱形BEFG中,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠ABC=∠BEF=60°,探究PG与PC的位置关系及PG...
问题:如图(1)在菱形ABCD和菱形BEFG中,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠ABC=∠BEF=60°,探究PG与PC的位置关系及 PG PC 的值,小聪同学的思路是延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG与PC的位置关系及 PG PC 的值.(2)将图(1)中的菱形BEFG恰好与菱形ABCD的边AB在同一直线上,原问题中的其它条件不变(如图(2))你在(1)中得到的两个结论是否发生变化?写出你的猜想,并加以证明.
展开
1个回答
展开全部
(1)延长GP,交CD于点H, ∵四边形ABCD与四边形BEFG是菱形, ∴CD ∥ AB ∥ GF, ∴∠PDH=∠PFG,∠DHP=∠PGF, ∵P是线段DF的中点, ∴DP=PF, 在△DPH和△FGP中,
∴△DPH≌△FGP(AAS), ∴PH=PG,DH=GF, ∵CD=BC,GF=GB=DH, ∴CH=CG, ∴CP⊥HG,∠ABC=60°, ∴∠DCG=120°, ∴∠PCG=60°, ∴PG:PC=tan60°=
∴线段PG与PC的位置关系是PG⊥PC,
(2)猜想:(1)中的结论没有发生变化. 证明:如图(2),延长GP交AD于点H,连接CH,CG, ∵P是线段DF的中点, ∴FP=DP, ∵AD ∥ GF, ∴∠HDP=∠GFP, ∵∠GPF=∠HPD, ∴△GFP≌△HDP(ASA), ∴GP=HP,GF=HD, ∵四边形ABCD是菱形, ∴CD=CB,∠HDC=∠ABC=60°, ∵∠ABC=∠BEF=60°,菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上, ∴∠GBF=60°, ∴∠HDC=∠GBF, ∵四边形BEFG是菱形, ∴GF=GB, ∴HD=GB, ∴△HDC≌△GBC, ∴CH=CG∠HCD=∠GCB, ∴PG⊥PC(到线段两端点距离相等的点在线段的垂直平分线上) ∵∠ABC=60° ∴∠DCB=∠HCD+∠HCB=120°, ∵∠HCG=∠HCB+∠GCB, ∴∠HCG=120°, ∴∠GCP=60°, ∴
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询