如图,△ABC中,BC的垂直平分线与∠BAC的外角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下

如图,△ABC中,BC的垂直平分线与∠BAC的外角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF②CE=AB+AE③∠B... 如图,△ABC中,BC的垂直平分线与∠BAC的外角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF ②CE=AB+AE ③∠BDC=∠BAC ④∠DAF+∠CBD=90°其中正确的是(  )A.①②③B.①②④C.②③④D.①③④ 展开
 我来答
玛丽隔壁LTuw5
推荐于2016-12-01 · 超过67用户采纳过TA的回答
知道答主
回答量:117
采纳率:0%
帮助的人:127万
展开全部
解答:解:过点D作DG⊥BC
∵DG垂直平分BC,
∴BD=CD
角平分线到角两边的距离相等,∴DE=DF,
∴Rt△CDE≌Rt△BDF,
∴∠BDF=∠CDE,CE=BF,∠FBD=∠DCE,
∵DE=DF,且DE⊥AC,DF⊥AB
∵AD=AD,
∴Rt△AFD≌Rt△AED,
∴AE=AF,
∴CE=BF=AB+AF=AB+AE
∴∠BDC=∠180°-(∠DBC+∠DCB)=180°-(∠DBC+∠ACB+∠DCA)=180°-(∠FBD+∠DBC+∠ACB)=180°-(∠ABC+∠ACB)=∠BAC
∴①②③正确,故选A.
成都霖霖爱死你LinLin
2021-07-31
知道答主
回答量:13
采纳率:0%
帮助的人:4288
展开全部
解答:
解:过点D作DG⊥BC
∵DG垂直平分BC,
∴BD=CD
角平分线到角两边的距离相等,∴DE=DF,
∴Rt△CDE≌Rt△BDF,
∴∠BDF=∠CDE,CE=BF,∠FBD=∠DCE,
∵DE=DF,且DE⊥AC,DF⊥AB
∵AD=AD,
∴Rt△AFD≌Rt△AED,
∴AE=AF,
∴CE=BF=AB+AF=AB+AE
∴∠BDC=∠180°-(∠DBC+∠DCB)=180°-(∠DBC+∠ACB+∠DCA)=180°-(∠FBD+∠DBC+∠ACB)=180°-(∠ABC+∠ACB)=∠BAC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
碎星妖月
2017-03-31 · TA获得超过508个赞
知道小有建树答主
回答量:423
采纳率:0%
帮助的人:107万
展开全部
由垂直平分线可确定三角形为等腰三角形,进而求出三角形全等,再利用全等,得出对应角,对应边相等,再求解.
解:过点D作DG⊥BC
∵DG垂直平分BC,
∴BD=CD
角平分线到角两边的距离相等,∴DE=DF,
∴Rt△CDE≌Rt△BDF,
∴∠BDF=∠CDE,CE=BF,∠FBD=∠DCE,
∵DE=DF,且DE⊥AC,DF⊥AB
∵AD=AD,
∴Rt△AFD≌Rt△AED,
∴AE=AF,
∴CE=BF=AB+AF=AB+AE
∴∠BDC=∠180°-(∠DBC+∠DCB)=180°-(∠DBC+∠ACB+∠DCA)=180°-(∠FBD+∠DBC+∠ACB)=180°-(∠ABC+∠ACB)=∠BAC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式