参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)

雾光之森
2014-11-15 · TA获得超过3415个赞
知道大有可为答主
回答量:1540
采纳率:100%
帮助的人:578万
展开全部
dx/dt=2;
te^y+y+1=0,关于t求导,得e^y+te^y*(dy/dt)=0,得dy/dt=-1/t;
所以dy/dx=(dy/dt)/(dx/dt)=-1/(2t).
所以d^2y/dx^2=[d(dy/dx)]/dx={[d(dy/dx)]/dt}/(dx/dt)=[1/(2t^2)]/2=1/(4t^2).
当x=0时,t=1/2,那么d^2y/dx^2(x=0)=1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式