
如图所示,OC向量=2OP向量,AB向量=2AC向量,过P得直线分别交OB,OA于M,N,且OM向量=mOB向量,ON向量=nOA向量,
如图所示,OC(向量)=2OP(向量),AB(向量)=2AC(向量),过P的直线分别交OB,OA于M,N,且OM(向量)=mOB(向量),ON(向量)=nOA(向量),则...
如图所示,OC(向量)=2OP(向量),AB(向量)=2AC(向量),过P的直线分别交OB,OA于M,N,且OM(向量)=mOB(向量),ON(向量)=nOA(向量),则mn/m+n的值为
A4 B2/3 C1/4
D3/2 展开
A4 B2/3 C1/4
D3/2 展开
展开全部
由题给条件可知:C是AB边的中点、P是中线OC的中点、OM/OB=m、ON/OA=n;
mn/(m+n)=1/[(1/m)+(1/n)]=1/[(OB/OM)+(OA/ON)]=OM*ON/(OB*ON+OA*OM)
=[(OM*ON*sinO)/2]/[(OB*ON*sinO)/2+(OA*OM*sinO)/2]
=S△OMN/(S△OAM+S△OBN);
S△OMN=S△OPM+S△OPN=m*S△OPB+n*S△OPC
=m*S△OBC/2 +n*S△OAC/2=[(m+n)/4]*S△OAB;
S△OAM=m*S△OAB,S△OBN=n*S△OAB;
∴ mn/(m+n)={[(m+n)/4]*S△OAB}/(m*S△OAB+n*S△OAB)=1/4;故选 C;
mn/(m+n)=1/[(1/m)+(1/n)]=1/[(OB/OM)+(OA/ON)]=OM*ON/(OB*ON+OA*OM)
=[(OM*ON*sinO)/2]/[(OB*ON*sinO)/2+(OA*OM*sinO)/2]
=S△OMN/(S△OAM+S△OBN);
S△OMN=S△OPM+S△OPN=m*S△OPB+n*S△OPC
=m*S△OBC/2 +n*S△OAC/2=[(m+n)/4]*S△OAB;
S△OAM=m*S△OAB,S△OBN=n*S△OAB;
∴ mn/(m+n)={[(m+n)/4]*S△OAB}/(m*S△OAB+n*S△OAB)=1/4;故选 C;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询