(2014?泰兴市二模)如图,△ABC中,以AB为直径的⊙O交AC于D,交BC于E,已知CD=AD.(1)求证:AB=CB;(
(2014?泰兴市二模)如图,△ABC中,以AB为直径的⊙O交AC于D,交BC于E,已知CD=AD.(1)求证:AB=CB;(2)过点D作出⊙O的切线;(要求:用尺规作图...
(2014?泰兴市二模)如图,△ABC中,以AB为直径的⊙O交AC于D,交BC于E,已知CD=AD.(1)求证:AB=CB;(2)过点D作出⊙O的切线;(要求:用尺规作图,保留痕迹,不写作法)(3)设过D点⊙O的切线交BC于H,DH=32,tanC=3,求⊙O的直径.
展开
展开全部
1.连接BD,则BD⊥AC
由于CD=AD,BD=BD,则△CDB≌△ADB
故AB=CB
3.易证∠DHB=90º
设BD中点为F,连OF;令θ=∠C
在RT△DOF中,DF=OD*sin∠DOF=OD*sin∠A=OD*sin∠C=OD*sinθ
在RT△DBH中,DH=BD*cos∠BDH=BD*cos∠C=BD*cosθ
则,DH=2*DF*cosθ=2*OD*sinθ*cosθ=2*OD*sinθ*cosθ
即:OD=DH/(2sinθcosθ) (1)
在RT△CDB中,因tanC=3,可算得sinC=3/√10,cosC=1/√10
代入(1)得,OD=32/6×10=160/3
故,⊙O的直径为320/3
由于CD=AD,BD=BD,则△CDB≌△ADB
故AB=CB
3.易证∠DHB=90º
设BD中点为F,连OF;令θ=∠C
在RT△DOF中,DF=OD*sin∠DOF=OD*sin∠A=OD*sin∠C=OD*sinθ
在RT△DBH中,DH=BD*cos∠BDH=BD*cos∠C=BD*cosθ
则,DH=2*DF*cosθ=2*OD*sinθ*cosθ=2*OD*sinθ*cosθ
即:OD=DH/(2sinθcosθ) (1)
在RT△CDB中,因tanC=3,可算得sinC=3/√10,cosC=1/√10
代入(1)得,OD=32/6×10=160/3
故,⊙O的直径为320/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询