已知二阶非齐次线性微分方程的三个特解为y1=1,y2=x,y3=x^2,写出该方程的通解。

要利用这个结论:若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=... 要利用这个结论:若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的解。 展开
百度网友cddcfc3
2008-05-30 · TA获得超过11.2万个赞
知道大有可为答主
回答量:1.3万
采纳率:0%
帮助的人:2.5亿
展开全部
若y1、y2是方程p1(x)y''+p2(x)y'+p3(x)y=f(x)的两个特解,则y1-y2是方程的p1(x)y''+p2(x)y'+p3(x)y=0的特解

利用上面的结论,可知y=x-1与y=x²-1都是这个二阶非齐次微分方程所对应的齐次方程的特解
因为这两个特解非线性相关,所以这个齐次方程的通解可表示为
y=C1(x-1)+C2(x²-1)
所以原微分方程的通解可表示为它的齐次方程的通解再加上它的一个特解
y=C1(x-1)+C2(x²-1)+1,C1,C2是任意常数
yyyaoyyyao
2008-05-30 · TA获得超过752个赞
知道答主
回答量:215
采纳率:0%
帮助的人:0
展开全部
a1+a2x+a3x^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
卿才英委鸥
2019-10-29 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:885万
展开全部
线性非其次微分方程的解等于特解加上对应其次微分方程的解
证明:微分方程可简化为l[y]=f(x)其中l[y]是方程左边线性算子,并设y?为方程特解,y!为l[y]=0的通解,有线性的性质得到l[y?+y!]=l[y?]+l[y!]
有l[y?]==f(x)(特解),l[y!]==0(对应通解),所以l[y?+y!]==f(x),
证明上面为通解和证明线性其次方程的类是,非常长就不列出了.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式