(2010?黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛

(2010?黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶... (2010?黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由. 展开
 我来答
手机用户63250
推荐于2016-12-01 · TA获得超过264个赞
知道答主
回答量:109
采纳率:0%
帮助的人:100万
展开全部
(1)设OA所在直线的函数解析式为y=kx,
∵A(2,4),
∴2k=4,
∴k=2,
∴OA所在直线的函数解析式为y=2x.

(2)①∵顶点M的横坐标为m,且在线段OA上移动,
∴y=2m(0≤m≤2).
∴顶点M的坐标为(m,2m).
∴抛物线函数解析式为y=(x-m)2+2m.
∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2).
∴点P的坐标是(2,m2-2m+4).
②∵PB=m2-2m+4=(m-1)2+3,
又∵0≤m≤2,
∴当m=1时,PB最短.

(3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2
即y=x2-2x+3.
假设在抛物线上存在点Q,使S△QMA=S△PMA
设点Q的坐标为(x,x2-2x+3).
①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,
∵PB=3,AB=4,
∴AP=1,
∴OC=1,
∴C点的坐标是(0,-1).
∵点P的坐标是(2,3),
∴直线PC的函数解析式为y=2x-1.
∵S△QMA=S△PMA
∴点Q落在直线y=2x-1上.
∴x2-2x+3=2x-1.
解得x1=2,x2=2,
即点Q(2,3).
∴点Q与点P重合.
∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等.
②当点Q落在直线OA的上方时,
作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,
∵AP=1,
∴EO=DA=1,
∴E、D的坐标分别是(0,1),(2,5),
∴直线DE函数解析式为y=2x+1.
∵S△QMA=S△PMA
∴点Q落在直线y=2x+1上.
∴x2-2x+3=2x+1.
解得:x1=2+
2
,x2=2-
2

代入y=2x+1得:y1=5+2
2
,y2=5-2
2

∴此时抛物线上存在点Q1(2+
2
,5+2
2
),Q2(2-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消