已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2)令bn=1Sn,且数列{bn}的前n项
已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2)令bn=1Sn,且数列{bn}的前n项和为Tn,求Tn;(3)若数列{cn}满...
已知数列{an}的前n项和为Sn,且Sn=n2+2n,(1)求数列{an}的通项公式;(2)令bn=1Sn,且数列{bn}的前n项和为Tn,求Tn;(3)若数列{cn}满足条件:cn+1=acn+2n,又c1=3,是否存在实数λ,使得数列{cn+λ2n}为等差数列?
展开
1个回答
展开全部
(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
=
=
(
?
),
∴Tn=
[(1?
)+(
?
)+(
?
)+…(
?
)+(
?
)+(
?
)]
=
(1+
?
?
)
=
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
,
,
成等差数列,
即2×
=
+
,
解得λ=1,此时
?
=
=
=
=
,
数列{
}是一个等差数列,
∴λ=1.
n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
n=1时也成立,
∴an=2n+1.
(2)bn=
1 |
Sn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n?2 |
1 |
n |
1 |
n?1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
9n2+15n |
4(n+1)(n+2) |
(3)cn+1=acn+2n,即cn+1=2cn+1+2n,
假设存在这样的实数,满足条件,
又c1=1,c2=2c1+1+2=9,c3=2c2+1+22=23,
3+λ |
2 |
9+λ |
4 |
23+λ |
8 |
即2×
9+λ |
4 |
3+λ |
2 |
23+λ |
8 |
解得λ=1,此时
cn+1+1 |
2n+1 |
cn+1 |
2n |
cn+1=1?2(cn+1) |
2×2n |
=
cn+1?2cn?1 |
2×2n |
1+2n?1 |
2×2n |
1 |
2 |
数列{
cn+1 |
2n |
∴λ=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询