请帮我推导一个式子 5
展开全部
nCr = n!/(r!(n-r)!)
To prove:
(3C2)+(4C2)+..+ ((n+2)C2) = ((n+3)C3) - (2C2)
LS
=(3C2)+(4C2)+..+ ((n+2)C2)
=3!/(2!1!)+4!/(2!2!)+..+ (n+2)!/(2!n!)
=(1/2)[3/1!+4/2!+..+ (n+2)!/n! ]
= (1/2)[ 3(2) + 4(3)+ 5(4))+ .... + (n+2)(n+1) ]
= (1/2)[ 1.2+ 2.3 +3.4 +..+ (n+1)(n+2) ] - 1
consider
n(n+1) = (1/3)[ n(n+1)(n+3) - (n-1)n(n+1)]
summation(i:1->n+1) i(i+1)
= (1/3)(n+1)(n+2)(n+3)
LS
= (1/2)[ 1.2+ 2.3 +3.4 +..+ (n+1)(n+2) ] - 1
= (1/6)(n+1)(n+2)(n+3) - 1
= (n+3)!/(3!n!) -1
=((n+3)C2) - (2C2) = RS
To prove:
(3C2)+(4C2)+..+ ((n+2)C2) = ((n+3)C3) - (2C2)
LS
=(3C2)+(4C2)+..+ ((n+2)C2)
=3!/(2!1!)+4!/(2!2!)+..+ (n+2)!/(2!n!)
=(1/2)[3/1!+4/2!+..+ (n+2)!/n! ]
= (1/2)[ 3(2) + 4(3)+ 5(4))+ .... + (n+2)(n+1) ]
= (1/2)[ 1.2+ 2.3 +3.4 +..+ (n+1)(n+2) ] - 1
consider
n(n+1) = (1/3)[ n(n+1)(n+3) - (n-1)n(n+1)]
summation(i:1->n+1) i(i+1)
= (1/3)(n+1)(n+2)(n+3)
LS
= (1/2)[ 1.2+ 2.3 +3.4 +..+ (n+1)(n+2) ] - 1
= (1/6)(n+1)(n+2)(n+3) - 1
= (n+3)!/(3!n!) -1
=((n+3)C2) - (2C2) = RS
追问
太深奥了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询