将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4.将△ADE绕点A逆时

将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°,AD边与AB边重合,AB=2AD=4.将△ADE绕点A逆时针方向旋转一个角度α(0°≤α≤180°),B... 将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4.将△ADE绕点A逆时针方向旋转一个角度α(0°≤α≤180°),BD的延长线交直线CE于点P.(1)如图2,BD与CE的数量关系是 , 位置关系是 ;(2)在旋转的过程中,当AD⊥BD时,求出CP的长; (3)在此旋转过程中,求点P运动的路线长.[ 展开
 我来答
根本京子
推荐于2016-09-24 · 超过55用户采纳过TA的回答
知道答主
回答量:104
采纳率:0%
帮助的人:128万
展开全部
(1)BD=EC,BD⊥CE;(2) ;(3) .


试题分析:(1)利用三角形中位线性质以及等腰直角三角形的性质得出即可.
(2)首先得出△ABD≌△ACE(SAS),进而求出四边形ADPE为正方形,即可得出CP的长.
(3)由(2)知,当α=60°时,∠PBA最大,且∠PBA=30°,此时∠AOP=60°,得出点P运动的路线是以O为圆心,OA长为半径的弧长 ,进而利用弧长公式求出即可.
试题解析:(1)BD=EC,BD⊥CE.理由如下:
∵等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4,
∴D,E分别是AB和AC的中点.
∴BD=EC=AD=AE,BD⊥CE.
(2)如图3所示:
∵△ABC和△ADE都是等腰三角形,∴AB=AC,AD=AE.
∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.
在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE.
∵∠1=∠2,∴BP⊥CE.
∵AD⊥BP,∠DAE=90°,AD=AE,∴四边形ADPE为正方形.∴AD=PE=2.
∵∠ADB=90°,AD=2,AB=4,∴∠ABD=30°.
∴BD=CE= .
∴CP=CE-PE= .

(3)如图4,取BC的中点O,连接OP、OA,
∵∠BPC=∠BAC=90°,∴OP=OA= BC= .
在此旋转过程中(0°≤α≤180°),由(2)知,当α=60°时,∠PBA最大,且∠PBA=30°,此时∠AOP=60°,
∴点P运动的路线是以O为圆心,OA长为半径的弧长 .
∴点P运动的路线长为:
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式