
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2. (1)求m的取值范围; (2)设y=x1+x2,
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2.(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值....
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2.
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值. 展开
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值. 展开
2个回答
展开全部
答:
1)x^2=2(1-m)x-m^2
x^2+2(m-1)x+m^2=0
判别式△=4(m-1)^2-4*1*m^2=4(1-2m)>=0
所以:m<=1/2
2)根据韦达定理得:
y=x1+x2=-b/a=2(1-m)
所以:当m取得最大值1/2时,y最小为1。
1)x^2=2(1-m)x-m^2
x^2+2(m-1)x+m^2=0
判别式△=4(m-1)^2-4*1*m^2=4(1-2m)>=0
所以:m<=1/2
2)根据韦达定理得:
y=x1+x2=-b/a=2(1-m)
所以:当m取得最大值1/2时,y最小为1。
追问
题目是问最小值啊
追答
题目是问y的最小值而已,不是m的最小值,m没有最小值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询