如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延
如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(...
如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=______;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.
展开
1个回答
展开全部
(1)∵△BDE是等边三角形, ∴∠EDB=60°, ∵∠ACB=90°,∠ABC=30°, ∴∠BAC=180°-90°-30°=60°, ∴FAC=180°-60°-60°=60°, ∴∠F=180°-90°-60°=30°, ∵∠ACB=90°, ∴∠ACF=180°-90°, ∴AF=2AC=2×1=2; (2)证明:∵△BDE是等边三角形, ∴BE=BD,∠EDB=∠EBD=60°, 在△BCD中,∠ADE+∠EDB=∠CBD+∠C, 即∠ADE+60°=∠CBD+90°, ∴∠ADE=30°+∠CBD, ∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°, ∴∠HBE=30°+∠CBD, ∴∠ADE=∠HBE, 在△ADE与△HBE中,
∴△ADE≌△HBE(SAS), ∴AE=HE,∠AED=∠HEB, ∴∠AED+∠DEH=∠DEH+∠HEB, 即∠AEH=∠BED=60°, ∴△AEH为等边三角形. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询