设函数f(x)对任意x,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1(1)求证:f(x)是奇

设函数f(x)对任意x,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1(1)求证:f(x)是奇函数(2)判断f(x)的单调性并证明(3)试问... 设函数f(x)对任意x,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1(1)求证:f(x)是奇函数(2)判断f(x)的单调性并证明(3)试问当-3≤x≤3时f(x)是否有最值?如果有,求出最值;如果没有说出理由 展开
 我来答
剂壷幜
2014-09-04 · 超过69用户采纳过TA的回答
知道答主
回答量:148
采纳率:0%
帮助的人:141万
展开全部
(1)令x=y=0,f(0)=0
令y=-x
∴f(-x)+f(x)=f(0)=0
∴f(x)是奇函数
(2)设x1>x2
∴f(x1)-f(x2)=f(x1-x2)<0
∴f(x)是减函数
(3)f(3)=f(2+1)=f(2)+f(1)=3f(1)=-3
f(-3)=3
由(2)知f(x)是减函数
∴最大值为3,最小值为-3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式