初中数学几何题,每一问都要具体解析,第三问请附图解答

24.(1)如图1,在△ABC中,∠BCA=90°,∠BAC=60°,过B作AC的平行线交∠BAC的平分线于点D,求证:BD=BA;(2)如图2,在矩形ABCD中,AB=... 24.(1)如图1,在△ABC中,∠BCA=90°,∠BAC=60°,过B作AC的平行线交∠BAC的平分线于点D,求证:BD=BA;
(2)如图2,在矩形ABCD中,AB=√3

BC, 分别取线段AD、CD中点F、E,连接AE,CF,交点为O,若BC=6,求四边形ABCO的面积。
(3)任意四边形ABCD中,∠BAD=60°,AD=2AB,点C在∠BAD的平分线上,且BC⊥CD,延长DC交直线AB于点E,若AC=6,求线段BE的长度。
题目是求AE的长,不是BE 亲们注意哦

答的好的给加分
展开
玥vs希
2013-05-26 · TA获得超过459个赞
知道小有建树答主
回答量:275
采纳率:0%
帮助的人:154万
展开全部
1,

∠CAD=∠BAD=1/2∠BAC=30°,
AC//BD => ∠BDA=∠CAD=30°,
=>∠BAD=∠BDA=30°
=>BD=BA

2,
如图,链接AC和EF,过O点作AD的垂线,垂足为G。
AF=FD且CE=ED => EF//AC 且EF=1/2AC=1/2x12=6
=> 三角形AOC相似于三角形EOF,
=>OE/OA=EF/AC=1/2
=>AO/AE=2/3
因为角OGA=角EDA=90度,所以三角形AOG相似于三角形AED
所以OG/ED=AO/AE=2/3
AS=BC=6,DE=1/2AB=3√3
所以OG=2/3x3√3=2√3
又AF=1/2BC=3
所以三角形AOF的面积=1/2AFxOG=1/2x3x2√3=3√3
梯形ABCF的面积=(AF+BC)xAB/2=(3+6)x6√3/2=27√3
所以,四边形ABCO的面积=梯形ABCF的面积-三角形AOF的面积=24√3

3,
图形如下。

连接BD交AC与F。
用解析几何列方程能做出来,不知道初中有没有学到解析几何?
做法是:以A点为原点建立直角坐标系,以AB为x轴,与BD平行的方向为y轴。
那么三角形BCD就是在圆BCD上,设AB=a,则圆心坐标是(a,√3/2 a),半径是√3/2 a,所以可以写出圆BCD的方程:(x-a)^2+(y-√3/2 a)^2=(√3/2 a)^2,而直线AC的方程是y=√3/3 x,
连立圆和直线的方程:
(x-a)^2+(y-√3/2 a)^2=(√3/2 a)^2 ------1

y=√3/3 x ------2
可以解出交点C的坐标(x,y)(取x较大的解为C点,另一个解是靠近A的交点),其中x和y都是只含a的表达式。
AC的距离是根号下(x^2+y^2)=6,所以得到一个只含a的方程。
解这个方程得出a值。
有了a值,就可以把B,C,D点的坐标都写出来了。而E点是直线DC与x轴的交点,写出直线DC的方程,令y=0,就得到了E点的横坐标x,AE的长度就等于E点横坐标的值。

(图片传不上来不知道为什么。)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yangsihuahui
2013-05-25 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6528
采纳率:68%
帮助的人:2719万
展开全部
  1. <DBA = 120度,《BAD=30,所有BDA为等腰三角形,BD=BA

  2. S-ADE=S- DFC = 1/4 ABCD, S-ADE+S-DFC-S-FDEO + S-ABCO = S-ABCD

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c3c4659
2013-05-25 · TA获得超过6702个赞
知道大有可为答主
回答量:4252
采纳率:28%
帮助的人:1414万
展开全部
只给出第三问的答案
(3)DB垂直AE
AD垂直DE
DC=1/2 AD=AB
角E=30
BC=AB
BE=2BC=2AB=AD
而AB=2根号3
所以BE=4根号3
更多追问追答
追问
不对 附图解答
追答
是的看错了
应该是dc=1/2 ac=3
ad=3根号3
bc=ab=3根号3/2
BE=2BC=3根号3
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
李首岳
2013-05-25 · TA获得超过211个赞
知道答主
回答量:214
采纳率:100%
帮助的人:60.3万
展开全部
不会画图啊!
追问
示意图
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式