如图,抛物线 的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若... 如图,抛物线 的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 展开
 我来答
dfrhbyzgce
2014-10-17 · TA获得超过437个赞
知道答主
回答量:113
采纳率:0%
帮助的人:120万
展开全部
(1) (2)该外接圆的圆心为AB的中点,且坐标为:( ,0)(3)当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大,M(2,﹣3)

解:(1)∵B(4,0)在抛物线 的图象上
,即:
∴抛物线的解析式为:
(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2)。
∴OA=1,OC=2,OB=4。∴
又∵OC⊥AB,∴△OAC∽△OCB。∴∠OCA=∠OBC。
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°。
∴△ABC为直角三角形,AB为△ABC外接圆的直径。
∴该外接圆的圆心为AB的中点,且坐标为:( ,0)。
(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y= x﹣2。
设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b= ,即: x 2 ﹣4x﹣4﹣2b=0,且△=0。
∴16﹣4×(﹣4﹣2b)=0,解得b=4。∴直线l:y= x﹣4。
,当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大。
∴点M是直线l和抛物线的唯一交点,有:
,解得: 。∴ M(2,﹣3)。
(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可。
(2)根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标。
(3)△MBC的面积可由 表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式