如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD

如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG.(1)CH=.(2)求DG... 如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG.(1)CH= .(2)求DG的长. 展开
 我来答
恋雨kddzz
推荐于2017-09-12 · 超过58用户采纳过TA的回答
知道答主
回答量:135
采纳率:66%
帮助的人:53万
展开全部
(1) ;(2)


试题分析:(1)利用勾股定理列式求出AC,根据旋转的性质可得CE=BC,然后根据△ABC和△CEH相似,利用相似三角形对应边成比例列式求解即可;
(2)过点G作GM⊥CD于M,然后求出△ABC和△GMC相似,根据相似三角形对应边成比例求出CM、MG,再求出DM,然后利用勾股定理列式计算即可得到DG.
试题解析:(1)在矩形ABCD中,∵AB=4,BC=3,
∴AC=
∵矩形ABCD绕点C按顺时针方向旋转得矩形CEFG,
∴CE=BC=3,
∵∠BAC+∠ACB=90°,∠ECH+∠ACB=90°,
∴∠BAC=∠ECH,
又∵∠B=∠CEH=90°,
∴△ABC∽△CEH,


解得
(2)如图,过点G作GM⊥CD于M,

∵∠ACB+∠ACD=∠GCM+∠ACD=90°,
∴∠ACB=∠GCM,
又∵∠B=∠GMC=90°,
∴△ABC∽△GMC,


解得CM= ,MG=
∴DM=CD-CM=4- =
在Rt△DMG中,DG=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式