如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若C... 如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试确定点O的位置;(2)求证平面PAB⊥平面PCD 展开
 我来答
道德人自同行4653
2014-08-10 · TA获得超过312个赞
知道答主
回答量:186
采纳率:50%
帮助的人:132万
展开全部
(Ⅰ)解:因为CD∥平面PBO,CD 平面ABCD,且平面ABCD∩平面PBO=BO,
所以 BO∥CD又 BC∥AD,
所以四边形BCDO为平行四边形,则BC=DO,
而AD=3BC,
故点O的位置满足AO=2OD.
(Ⅱ)证:因为侧面PAD⊥底面ABCD,AB 底面ABCD,且AB⊥交线AD,
所以AB⊥平面PAD,则AB⊥PD又PA⊥PD,
且PA 平面PAB,AB 平面PAB,AB∩PA=A,
所以PD⊥平面PAB,PD 平面PCD,
所以:平面AB⊥平面PCD.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式