如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相
如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方...
如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F.(1)求证:四边形ABCD是正方形;(2)当AE=3EF时,判断FG与EF有何数量关系?并证明你的结论.
展开
1个回答
展开全部
(1)证明:∵四边形ABCD是矩形,
∴∠BAD=∠BCD=90°,
∵∠BAE=∠BCE,
∴∠BAD-∠BAE=∠BCD-∠BCE,
即∠DAE=∠DCE,
在△AED和△CED中,
,
∴△AED≌△CED(AAS),
∴AD=CD,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形;
(2)当AE=3EF时手桥岩,FG=8EF.
证明:设EF=k,则AE=3k
∵△AED≌毕御△CED,
∴CE=AE=3k,
∵四边形ABCD是正方形,
∴AD∥BC,
∴∠G=∠DAE,
又∵∠DAE=∠DCE,
∴∠DCE=∠G,
又∵∠CEF=∠GEC,
∴△CEF∽△GEC,
∴
=
,
∴
=
,
∴EG=9k,
∴FG=EG-EF=8k,
∴FG=8EF.
∴∠BAD=∠BCD=90°,
∵∠BAE=∠BCE,
∴∠BAD-∠BAE=∠BCD-∠BCE,
即∠DAE=∠DCE,
在△AED和△CED中,
|
∴△AED≌△CED(AAS),
∴AD=CD,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形;
(2)当AE=3EF时手桥岩,FG=8EF.
证明:设EF=k,则AE=3k
∵△AED≌毕御△CED,
∴CE=AE=3k,
∵四边形ABCD是正方形,
∴AD∥BC,
∴∠G=∠DAE,
又∵∠DAE=∠DCE,
∴∠DCE=∠G,
又∵∠CEF=∠GEC,
∴△CEF∽△GEC,
∴
EF |
CE |
CE |
EG |
∴
k |
3k |
3k |
EG |
∴EG=9k,
∴FG=EG-EF=8k,
∴FG=8EF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询