如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),抛物线的顶点为P,连接AC
如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使...
如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP?若存在,求出M点坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)设此抛物线的解析式为:y=a(x-x1)(x-x2),
∵抛物线与x轴交于A(-1,0)、B(3,0)两点,
∴y=a(x+1)(x-3),
又∵抛物线与y轴交于点C(0,-3),
∴a(0+1)(0-3)=-3,
∴a=1
∴y=(x+1)(x-3),
即y=x2-2x-3,
用其他解法参照给分;
(2)∵点A(-1,0),点C(0,-3),
∴OA=1,OC=3,
∵DC⊥AC,
∴∠DCO+∠OCA=90°,
∵OC⊥x轴,
∴∠COA=∠COQ=90°,∠OAC+∠OCA=90°,
∴∠DCO=∠OAC,
∴△QOC∽△COA,
∴
=
,即
=
,
∴OQ=9,
又∵点Q在x轴的正半轴上,
∴Q(9,0),
设直线QC的解析式为:y=mx+n,则
,
解得
,
∴直线QC的解析式为:y=
x-3,
∵点D是抛物线与直线QC的交点,
∴
∵抛物线与x轴交于A(-1,0)、B(3,0)两点,
∴y=a(x+1)(x-3),
又∵抛物线与y轴交于点C(0,-3),
∴a(0+1)(0-3)=-3,
∴a=1
∴y=(x+1)(x-3),
即y=x2-2x-3,
用其他解法参照给分;
(2)∵点A(-1,0),点C(0,-3),
∴OA=1,OC=3,
∵DC⊥AC,
∴∠DCO+∠OCA=90°,
∵OC⊥x轴,
∴∠COA=∠COQ=90°,∠OAC+∠OCA=90°,
∴∠DCO=∠OAC,
∴△QOC∽△COA,
∴
OQ |
OC |
OC |
OA |
OQ |
3 |
3 |
1 |
∴OQ=9,
又∵点Q在x轴的正半轴上,
∴Q(9,0),
设直线QC的解析式为:y=mx+n,则
|
解得
|
∴直线QC的解析式为:y=
1 |
3 |
∵点D是抛物线与直线QC的交点,
∴
|