如图1,在四边形ABCD中,AD∥BC,AB⊥BC,AD=CD,∠C=60°,DH⊥BC于点H,点E是BC上一点,连接AE,将△AB

如图1,在四边形ABCD中,AD∥BC,AB⊥BC,AD=CD,∠C=60°,DH⊥BC于点H,点E是BC上一点,连接AE,将△ABE沿AE翻折,点B落在点F处,射线EF... 如图1,在四边形ABCD中,AD∥BC,AB⊥BC,AD=CD,∠C=60°,DH⊥BC于点H,点E是BC上一点,连接AE,将△ABE沿AE翻折,点B落在点F处,射线EF交CD所在直线于点M(1)若点M在CD边上时,求证:FM-DM=CH;(2)如图2,若点M在CD边得延长线上时,FM、DM、CH三条线段有怎样得数量关系?说明理由. 展开
 我来答
vbsTA0091
推荐于2016-09-08 · 超过67用户采纳过TA的回答
知道答主
回答量:132
采纳率:0%
帮助的人:172万
展开全部
解答:(1)证明:过点A作AG⊥CD,交CD的延长线于点G,连接AM,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠ACD=∠DAC
∴∠ACB=∠ACD,
∴AG=AB
∵AB=AF,
∴AG=AF
又∵AM=AM,
在Rt△AMG和Rt△AMF中,
AF=AG
AM=AM

∴Rt△AMG≌Rt△AMF(HL),
∴FM=GM,
∴FM一DM=GD,
在Rt△AGD和Rt△DHC中,AD=DC,AG=DH,由勾股定理得:DG=CH,
∴FM-DM=CH;

(2)FM+DM=CH,
理由是:过点A作AG⊥CD,交CD的延长线于点G,连接AM,AC,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠ACD=∠DAC
∴∠ACB=∠ACD,
∴AG=AB
∵AB=AF,
∴AG=AF,
又∵AM=AM,
在Rt△AMG和Rt△AMF中,
AF=AG
AM=AM

∴Rt△AMG≌Rt△AMF(HL),
∴FM=GM,
∴FM+DM=GD,
在Rt△AGD和Rt△DHC中,AD=DC,AG=DH,由勾股定理得:DG=CH,
∴FM+DM=CH.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式