
(2013?沙市区三模)如图,AB为⊙O的直径,点C是⊙O上的一点,CD⊥AB,垂足为点D,CF⊥AF,且CF=CD,AF交
(2013?沙市区三模)如图,AB为⊙O的直径,点C是⊙O上的一点,CD⊥AB,垂足为点D,CF⊥AF,且CF=CD,AF交⊙O于点E,BE交AC于点M.(1)求证:CF...
(2013?沙市区三模)如图,AB为⊙O的直径,点C是⊙O上的一点,CD⊥AB,垂足为点D,CF⊥AF,且CF=CD,AF交⊙O于点E,BE交AC于点M.(1)求证:CF是⊙O的切线;(2)若AB=6,cos∠BCD=56,求AM的长.
展开
1个回答
展开全部
解答:(1)证明:
连接OC交BE于N,
∵CF⊥AF,CD⊥AB,CF=CD,
∴∠FAC=∠DAC,
∴弧EC=弧BC,
∴OC⊥BE,
∵AB是直径,
∴∠EFC=∠FEN=∠ENC=90°,
∴∠FCO=360°-90°-90°-90°=90°,
即OC⊥CF,
∵OC为半径,
∴CF是⊙O的切线.
(2)解:∵AB是直径,CD⊥AB,
∴∠ACB=∠CDB=90°,
∴∠CAB+∠CBA=90°,∠BCD+∠CBA=90°,
∴∠BCD=∠CAB,
∵AB=6,cos∠BCD=
,
∴cos∠CAB=
=
,
∴AC=5,
由勾股定理得:BC=
=
,
∵弧CE=弧BC,
∴∠EAC=∠CBE=∠CAB,
即∠CBM=∠CAB,
∵∠ACB=∠ACB,
∴△CAB∽△CBM,
∴
=
,
∵BC=
,AC=5,
∴CM=
,
∴AM=AC-CM=5-
=
.
连接OC交BE于N,
∵CF⊥AF,CD⊥AB,CF=CD,
∴∠FAC=∠DAC,
∴弧EC=弧BC,
∴OC⊥BE,
∵AB是直径,
∴∠EFC=∠FEN=∠ENC=90°,
∴∠FCO=360°-90°-90°-90°=90°,
即OC⊥CF,
∵OC为半径,
∴CF是⊙O的切线.
(2)解:∵AB是直径,CD⊥AB,
∴∠ACB=∠CDB=90°,
∴∠CAB+∠CBA=90°,∠BCD+∠CBA=90°,
∴∠BCD=∠CAB,
∵AB=6,cos∠BCD=
5 |
6 |
∴cos∠CAB=
AC |
AB |
5 |
6 |
∴AC=5,
由勾股定理得:BC=
62?52 |
11 |
∵弧CE=弧BC,
∴∠EAC=∠CBE=∠CAB,
即∠CBM=∠CAB,
∵∠ACB=∠ACB,
∴△CAB∽△CBM,
∴
BC |
AC |
CM |
BC |
∵BC=
11 |
∴CM=
11 |
5 |
∴AM=AC-CM=5-
11 |
5 |
14 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询