如何确定函数自变量的取值范围
3个回答
展开全部
为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.
初中阶段确定函数自变量的取值范围大致可分为以下三种类型:
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.
例1.在下列函数关系式中,自变量x的取值范围分别是什么?
⑴y=2x-5; ⑵y=; ⑶y=; ⑷y=; ⑸y=(x-3)0
解析:⑴为整式形式:x的取值范围为任意实数;
⑵为分式形式:分母2x+1≠0 ∴x≠- ∴x的取值范围为x≠-;
⑶含算术平方根:被开方数3x-4≥0 ∴x≥ ∴x的取值范围为x≥;
⑷既含分母、又含算术平方根,故 ∴x≥-2且x≠0
x的取值范围为:x≥-2且x≠0
⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量等不能为负数.
⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.
初中阶段确定函数自变量的取值范围大致可分为以下三种类型:
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.
例1.在下列函数关系式中,自变量x的取值范围分别是什么?
⑴y=2x-5; ⑵y=; ⑶y=; ⑷y=; ⑸y=(x-3)0
解析:⑴为整式形式:x的取值范围为任意实数;
⑵为分式形式:分母2x+1≠0 ∴x≠- ∴x的取值范围为x≠-;
⑶含算术平方根:被开方数3x-4≥0 ∴x≥ ∴x的取值范围为x≥;
⑷既含分母、又含算术平方根,故 ∴x≥-2且x≠0
x的取值范围为:x≥-2且x≠0
⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量等不能为负数.
⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.
展开全部
根据题意,如果叫你比较两个函数值的y1>y2,你只需要画出函数图像,观察y1>y2的那一段,刚好重合就是界限,不过如果是比较反比例函数和一次函数,那么就会有两个取值范围。具体看题意,进行判断。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询