函数y=根号(x-4)+根号(15-3x)的值域 用三角函数求解时其中t(0≤t≤π/2) 的范围是如何确定求的?
设x-4=sin²t,(0≤t≤π/2)15-3x=15-3(sin²t+4)=3(1-sin²t)=3cos²ty=√(sin&...
设x-4=sin²t,(0≤t≤π/2)
15-3x=15-3(sin²t+4)=3(1-sin²t)=3cos²t
y=√(sin²t)+√(3cos²t )
=sint+√3cost
=2(1/2sint+√3/2cost)
=2sin(t+π/3)
因为0≤t≤π/2,所以π/3≤t+π/3≤5π/6
1≤2sin(t+π/3)≤2
y的值域为[1,2] 展开
15-3x=15-3(sin²t+4)=3(1-sin²t)=3cos²t
y=√(sin²t)+√(3cos²t )
=sint+√3cost
=2(1/2sint+√3/2cost)
=2sin(t+π/3)
因为0≤t≤π/2,所以π/3≤t+π/3≤5π/6
1≤2sin(t+π/3)≤2
y的值域为[1,2] 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询