求1.z=e^[-sin (y/x)] 2.z=arctan[(x+y)/(x-y)]的偏导数 5
1个回答
展开全部
求1.z=e^[-sin (y/x)] ;2.z=arctan[(x+y)/(x-y)]的偏导数
解:1。令z=e^u,u=-sinv,v=y/x;则:
∂z/∂x=(dz/du)(du/dv)(∂v/∂x)=(e^u)(-cosv)(-y/x²)=e^[-sin(y/x)][cos(y/x)](y/x²);
∂z/∂y=(dz/du)(du/dv)(∂v/∂y)=(e^u)(-cosv)(1/x)=-e^[-sin(y/x)][cos(y/x)](1/x);
解:2。令z=arctanu,u=(x+y)/(x-y);则:
∂z/∂x=(dz/du)(∂u/∂x)=[1/(1+u²)][(x-y)-(x+y)]/(x-y)²= -{1/[1+arctan²(x+y)/(x-y)]}[(2y/(x-y)²];
∂z/∂y=(dz/du)(∂u/∂y)=[1/(1+u²)][(x-y)+(x+y)]/(x-y)²={1/[1+arctan²(x+y)/(x-y)]}[(2x/(x-y)²];
解:1。令z=e^u,u=-sinv,v=y/x;则:
∂z/∂x=(dz/du)(du/dv)(∂v/∂x)=(e^u)(-cosv)(-y/x²)=e^[-sin(y/x)][cos(y/x)](y/x²);
∂z/∂y=(dz/du)(du/dv)(∂v/∂y)=(e^u)(-cosv)(1/x)=-e^[-sin(y/x)][cos(y/x)](1/x);
解:2。令z=arctanu,u=(x+y)/(x-y);则:
∂z/∂x=(dz/du)(∂u/∂x)=[1/(1+u²)][(x-y)-(x+y)]/(x-y)²= -{1/[1+arctan²(x+y)/(x-y)]}[(2y/(x-y)²];
∂z/∂y=(dz/du)(∂u/∂y)=[1/(1+u²)][(x-y)+(x+y)]/(x-y)²={1/[1+arctan²(x+y)/(x-y)]}[(2x/(x-y)²];
追问
可是第二题的参考答案是∂z/∂x=y/(x^2+y^2),∂z/∂y=x/(x^2+y^2)
追答
对不起,我代错了!
2。令z=arctanu,u=(x+y)/(x-y);则:
∂z/∂x=(dz/du)(∂u/∂x)=[1/(1+u²)][(x-y)-(x+y)]/(x-y)²= -{1/[1+(x+y)²/(x-y)²]}[(2y/(x-y)²]
=-[(x-y)²/(x²+y²)][y/(x-y)²]=-y/(x²+y²);
∂z/∂y=(dz/du)(∂u/∂y)=[1/(1+u²)][(x-y)+(x+y)]/(x-y)²={1/[1+(x+y)²/(x-y)²]}[(2x/(x-y)²]
=[(x-y)²/(x²+y²)][x/(x-y)²]=x/(x²+y²);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询