若正项级数∑(1到n)an收敛,则∑(1到n)根号an/n收敛,求证明。
正项级数∑(1到n)an收敛,所以lim an/an-1小于1,所以,lim根号下(an/n)/(an-1/n-1)=(an/an-1)*(n-1/n)小于1,所以,∑(1到n)根号an/n收敛。
令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b恒成立,就称数列{an}收敛于A(极限为A),即数列{an}为收敛数列。
扩展资料:
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。
函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)。
解:
正项级数∑(1到n)an收敛,所以lim an/an-1小于1,所以,lim根号下(an/n)/(an-1/n-1)=(an/an-1)*(n-1/n)小于1,所以,∑(1到n)根号an/n收敛。
令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b恒成立,就称数列{an}收敛于A(极限为A),即数列{an}为收敛数列。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数
解题过程如下图:
扩展资料
迭代算法的敛散性
1.全局收敛
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
2.局部收敛
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
一类重要的函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。
例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。
lim根号下(an/n)/(an-1/n-1)=(an/an-1)*(n-1/n)小于1,得证