设双曲线x2/a2-y2/b2=1(a>0,b>0)的离心率为e,
直线l:x=a2/c与两条渐近线交于P、Q两点,右焦点为F,且三角形PQF为正三角形,求它的离心率...
直线l:x=a2/c与两条渐近线交于P、Q两点,右焦点为F,且三角形PQF为正三角形,求它的离心率
展开
1个回答
展开全部
双曲线x^2/a^2-y^2/b^2=1
c^2=a^2+b^2
易求得右焦点F=F(c,0)
渐近线为y=±bx/a
x=a^2/c与渐近线交于P,Q两点
易求得P,Q两点坐标为(a^2/c,ab/c),(a^2/c,-ab/c)
∴P,Q两点的距离为|PQ|=2ab/c
且双曲线关于x轴对称,则有
|PF|=|QF|=√[(c-a^2/c)^2+(ab/c)^2]=b
又三角形PQF为正三角形,则有
|PQ|=|PF|=|QF|,即有
2ab/c=b => a/c=1/2
∴离心率e=c/a=2
c^2=a^2+b^2
易求得右焦点F=F(c,0)
渐近线为y=±bx/a
x=a^2/c与渐近线交于P,Q两点
易求得P,Q两点坐标为(a^2/c,ab/c),(a^2/c,-ab/c)
∴P,Q两点的距离为|PQ|=2ab/c
且双曲线关于x轴对称,则有
|PF|=|QF|=√[(c-a^2/c)^2+(ab/c)^2]=b
又三角形PQF为正三角形,则有
|PQ|=|PF|=|QF|,即有
2ab/c=b => a/c=1/2
∴离心率e=c/a=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询