求积分∫∫1/(x^4+y^2)dxdy,其中D=(x,y)x≥1,y≥x^2 20

 我来答
小小刘加成
2015-05-09 · TA获得超过4217个赞
知道小有建树答主
回答量:1111
采纳率:0%
帮助的人:451万
展开全部
(1)原式=∫dx∫(y/x)dy
=∫((x-x/2)/x)dx
=∫(1/2)dx
=(1/2)(2-1)
=1/2;
(2)原式=∫dx∫xdy
=∫x√(4-x²)dx
=(-1/2)∫√(4-x²)d(4-x²)
=(-1/2)(2/3)(0-2)
=2/3;
(3)原式=∫dy∫(y/x)dx
=∫y(2lny)dy
=2∫y*lnydy
=(y²*lny)│-∫ydy (应用分部积分法)
=4ln2-3/2.
追问

书上答案是pi/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式