
两角和与差的正切公式推导?
6个回答
展开全部
tan(A+B)=sin(A+B)/cos(A+B)=sinAcosB+cosAsinB/cosAcosB-sinAsinB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
tan(A+B)=tanA+tanB/1-tanAtanB,tan(A-B)=tanA-tanB/1+tanAtanB
tan(A+B)要有意义,A+B≠π/2+kπ(k是整数)
tan(A+B)=sin(A+B)/cos(A+B)=(sinAcosB+sinBcosA)/(cosAcosB-sinAsinB)
当cosAcosB≠0时,分子分母同时除以cosAcosB,得
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
用-B换B得tan(A-B)=(tanA-tanB)/(1+tanAtanB)
当cosAcosB=0时,不妨设cosA=0,则A=π/2+kπ
此时tanA不存在,故不能使用和差角公式
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
tan(A+B)=tanA+tanB/1-tanAtanB,tan(A-B)=tanA-tanB/1+tanAtanB
tan(A+B)要有意义,A+B≠π/2+kπ(k是整数)
tan(A+B)=sin(A+B)/cos(A+B)=(sinAcosB+sinBcosA)/(cosAcosB-sinAsinB)
当cosAcosB≠0时,分子分母同时除以cosAcosB,得
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
用-B换B得tan(A-B)=(tanA-tanB)/(1+tanAtanB)
当cosAcosB=0时,不妨设cosA=0,则A=π/2+kπ
此时tanA不存在,故不能使用和差角公式
展开全部
tan(A+B)要有意义,A+B≠π/2+kπ(k是整数)
tan(A+B)=sin(A+B)/cos(A+B)=(sinAcosB+sinBcosA)/(cosAcosB-sinAsinB)
当cosAcosB≠0时,分子分母同时除以cosAcosB,得
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
用-B换B得tan(A-B)=(tanA-tanB)/(1+tanAtanB)
当cosAcosB=0时,不妨设cosA=0,则A=π/2+kπ
此时tanA不存在,故不能使用和差角公式
tan(A+B)=sin(A+B)/cos(A+B)=(sinAcosB+sinBcosA)/(cosAcosB-sinAsinB)
当cosAcosB≠0时,分子分母同时除以cosAcosB,得
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
用-B换B得tan(A-B)=(tanA-tanB)/(1+tanAtanB)
当cosAcosB=0时,不妨设cosA=0,则A=π/2+kπ
此时tanA不存在,故不能使用和差角公式
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tan(A+B)=sin(A+B)/cos(A+B)=sinAcosB+cosAsinB/cosAcosB-sinAsinB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
tan(A+B)=tanA+tanB/1-tanAtanB,tan(A-B)=tanA-tanB/1+tanAtanB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
tan(A+B)=tanA+tanB/1-tanAtanB,tan(A-B)=tanA-tanB/1+tanAtanB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |