数列各项为正数,其前n项和为Sn,且满足2anSn-an^2=2. 设bn=2/(4Sn^4-1),求bn前n项和Tn
1个回答
2013-05-28
展开全部
(1)
n=1时,2S1=S1+1/S1,S1=1,b1=S1^2=1
n>1时,an=Sn-Sn-1
2Sn=Sn-Sn-1+1/(Sn-Sn-1)
(Sn+Sn-1)(Sn-Sn-1)=1
即Sn^2-Sn-1^2=1
bn-bn-1=1
bn是首项、公差均为1的等差数列
(2)
bn=n
即Sn^2=n,Sn=√n
n=1时,a1=S1=1
n>1时,an=Sn-Sn-1=√n-√(n-1)
综上,数列{an}的通项公式为an=√n-√(n-1)
n=1时,2S1=S1+1/S1,S1=1,b1=S1^2=1
n>1时,an=Sn-Sn-1
2Sn=Sn-Sn-1+1/(Sn-Sn-1)
(Sn+Sn-1)(Sn-Sn-1)=1
即Sn^2-Sn-1^2=1
bn-bn-1=1
bn是首项、公差均为1的等差数列
(2)
bn=n
即Sn^2=n,Sn=√n
n=1时,a1=S1=1
n>1时,an=Sn-Sn-1=√n-√(n-1)
综上,数列{an}的通项公式为an=√n-√(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询