正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°

正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)延长FC、AE交于点M,连接DF、BM,若C为FM中... 正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°
(1)求证:AG=FG;
(2)延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.
展开
mbcsjs
2013-05-28 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
1、过C点作BF的垂线,垂足为H点,
则∠FCH=45,∴HF=HC,
∵AE⊥BG,
∴易证:∠BAG=∠CBH
∴易证:△BAG≌△CBH
∴AG=BH,BG=CH
∴BG=FH
∴AG=FG
2、连接AF,由1、结论得:
AG=FG,∴△AGF是等腰直角△
而∠BFC=45°,∴∠AFM=90°
∴△AFM也是等腰直角△
∴AG=MG=FG,
∴AB=MB=10=AD=DC,
由1、结论得:BG=FH=CH
∵C点是FM中点,
∴CH是△FGM的中位线,
∴FH=GH
∴BG=GH=HF,
同理:GE是△BHC的中位线,
∴BE=CE=5,
设BG=a,则FG=AG=MG=2a
∴由勾股定理得:a=2√5
∴AM=4a=8√5
分别延长AM、DC,相交于N点,
∵CE∥DA,且CE=½DA
∴DC=NC=10,而CF=CM,
∴易证:△DFC≌△NMC
∴FD=NM
由勾股定理得:AN=10√5
∴MN=AN-AM=10√5-8√5=2√5
即FD=2√5
追问
我这边电脑的图传不上去,麻烦画个图像
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式