如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC,AC于点D,连接EB交OD于点F。
2013-05-28
展开全部
(1)连接AD.
∵AB是⊙O的直径,
∴∠ADB=∠AEB=90°,
∵AB=AC,
∴DC=DB.
∵OA=OB,
∴OD∥AC.
∴∠OFB=∠AEB=90°,
∴OD⊥BE.
(2)设AE=x,
∵OD⊥BE,
∴可得OD是BE的中垂线,
∴DE=DB,
∴∠1=∠2,
∴BD=ED=√5/2 ,
∵OD⊥EB,
∴FE=FB.
∴OF=1/2AE=1/2x,DF=OD-OF=5/4 -1/2x.
在Rt△DFB中,BF�0�5=DB�0�5-DF�0�5=(√5/2)�0�5-(5/4-1/2x)�0�5;
在Rt△OFB中,BF�0�5=OB�0�5-OF�0�5=(5/4)�0�5-(1/2x)�0�5;
∴=(√5/2)�0�5-(5/4-1/2x)�0�5=(5/4)�0�5-(1/2x)�0�5
解得x=3/2 ,
即AE=3/2 .
∵AB是⊙O的直径,
∴∠ADB=∠AEB=90°,
∵AB=AC,
∴DC=DB.
∵OA=OB,
∴OD∥AC.
∴∠OFB=∠AEB=90°,
∴OD⊥BE.
(2)设AE=x,
∵OD⊥BE,
∴可得OD是BE的中垂线,
∴DE=DB,
∴∠1=∠2,
∴BD=ED=√5/2 ,
∵OD⊥EB,
∴FE=FB.
∴OF=1/2AE=1/2x,DF=OD-OF=5/4 -1/2x.
在Rt△DFB中,BF�0�5=DB�0�5-DF�0�5=(√5/2)�0�5-(5/4-1/2x)�0�5;
在Rt△OFB中,BF�0�5=OB�0�5-OF�0�5=(5/4)�0�5-(1/2x)�0�5;
∴=(√5/2)�0�5-(5/4-1/2x)�0�5=(5/4)�0�5-(1/2x)�0�5
解得x=3/2 ,
即AE=3/2 .
展开全部
1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABE=90°.
(2)利用已知条件证得∴△AGC∽△BFA,利用比例式求得线段的长即可.
解答:(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.(∠1=∠EAB,.∠2=∠ABE)
∵AB=AC,
∴∠1=
1/2∠CAB.
∵∠CBF=
1/2∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=
√5/5,∠1=∠CBF,
∴sin∠1=
√5/5
∵∠AEB=90°,AB=5,
∴BE=AB•sin∠1=
√5,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
√5,
在Rt△ABE中,由勾股定理得AE=2√
5,
∴sin∠2=
2√5/5,cos∠2=
√5/5,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴
GC/BF=AG/AB
∴BF=
GC•AB/AG=
20/3
(2)利用已知条件证得∴△AGC∽△BFA,利用比例式求得线段的长即可.
解答:(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.(∠1=∠EAB,.∠2=∠ABE)
∵AB=AC,
∴∠1=
1/2∠CAB.
∵∠CBF=
1/2∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于点G.
∵sin∠CBF=
√5/5,∠1=∠CBF,
∴sin∠1=
√5/5
∵∠AEB=90°,AB=5,
∴BE=AB•sin∠1=
√5,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
√5,
在Rt△ABE中,由勾股定理得AE=2√
5,
∴sin∠2=
2√5/5,cos∠2=
√5/5,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴
GC/BF=AG/AB
∴BF=
GC•AB/AG=
20/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询